Fractal 118 C – Opposite Multiverse Dimensions

Part of OUTER SPACE series – 05 2023

antagonist . blackhole . dimensions . frontier . multiverse . spacetime . universe
Fractal 118 C | Opposite dimensional multiverses

Data

This digital works is created exclusively from fractals, with 0% AI generated. It can therefore be converted into a set of functions and parameters that can be the basis for the training of an AI.

The mathematical formulas and parameter combinations corresponding to each fractal are presented below. In each case, the numerical characters have been replaced by ■ to prevent unauthorized reproduction. If you are interested in using the full data set, please contact Philippe.

Fractal 118 C - Opposite Multiverse Dimensions - Part of OUTER SPACE series - 05.2023

Fractal 118 B | Opposite dimensional multiverses

Fractal_■■■_C {
fractal:
  title="Fractal_■■■_C" width=■■■■ height=■■■■ layers=■■
  credits="Philoxerax;■/■■/■■■■"
layer:
  caption="Layer ■" opacity=■■■ mergemode=multiply
mapping:
  center=-■.■■■■■■■■■■■■■/-■.■■■■■■■■■■■■■■ magn=■■■■.■■■■
  angle=■■■.■■■■
formula:
  maxiter=■■■■ percheck=off filename="dmj.ufm"
  entry="dmj-PhoenixDNovaMandel" p_start=■/■ p_power■=■/■ p_power■=■/■
  p_coeff■=■/■ p_coeff■=-■/■ p_induct=-■.■/■ p_bailout=■.■■■■■
  p_usecritical=no p_relax=■/■
inside:
  transfer=sqr
outside:
  transfer=linear
gradient:
  smooth=yes rotation=-■■ index=■■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■■ index=■■■ color=■ index=■■■ color=■■■■■■■ index=■■■
  color=■■■■■■■■ index=-■■ color=■■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Layer ■" opacity=■■■ transparent=yes
mapping:
  center=■■.■■■■■■■■■■/■.■■■■■■■■ magn=■.■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■
  p_bailout=■■■■.■ f_fn■=floor f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■■ index=■■■ color=■
opacity:
  smooth=no index=■ opacity=■
layer:
  caption="Layer ■" opacity=■■■ transparent=yes
mapping:
  center=■■.■■■■■■■■■/-■.■■■■■■■■ magn=■.■■■ angle=■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■
  p_bailout=■■■■.■ f_fn■=floor f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■■ index=■■■ color=■
opacity:
  smooth=no index=■ opacity=■
layer:
  caption="Layer ■" opacity=■■ mergemode=addition
mapping:
  center=■.■■■■■■■■■■■■/-■.■■■■■■■■■■■■■ magn=■■■.■■■■■
  angle=-■■■■.■■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-■■■■■■a-m" p_e■=■.■ p_e■=■.■
  p_bailout=■■■■.■ f_fn■=flip f_fn■=ident
inside:
  transfer=none solid=■■■■■■■■■■
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■ index=■■■ color=■ index=■■■ color=■■■■■■■■
  index=■■■ color=■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Background" opacity=■■■ mergemode=screen
mapping:
  center=-■.■■■■■■■■■■■■■/-■.■■■■■■■■■■■■■■ magn=■■■■.■■■■
  angle=■■■.■■■■
formula:
  maxiter=■■■■ percheck=off filename="dmj.ufm"
  entry="dmj-PhoenixDNovaMandel" p_start=■/■ p_power■=■/■ p_power■=■/■
  p_coeff■=■/■ p_coeff■=-■/■ p_induct=-■.■/■ p_bailout=■.■■■■■
  p_usecritical=no p_relax=■/■
inside:
  transfer=sqr
outside:
  transfer=linear
gradient:
  smooth=yes rotation=-■■ index=■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■■ index=■■■ color=■■■■■■■■ index=■■■ color=■■■■■■■■
  index=-■■ color=■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Layer ■" opacity=■■■ mergemode=screen
mapping:
  center=■■.■■■■■■■■■■/■.■■■■■■■■ magn=■.■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■
  p_bailout=■■■■.■ f_fn■=floor f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■■ index=■■■ color=■ index=■■ color=■■■■■■■■
  index=■■■ color=■■■■■■■■ index=■■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Background" opacity=■■■ mergemode=screen
mapping:
  center=■■.■■■■■■■■■/-■.■■■■■■■■ magn=■.■■■ angle=■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■
  p_bailout=■■■■.■ f_fn■=floor f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■■ index=■■■ color=■ index=■■ color=■■■■■■■■
  index=■■■ color=■■■■■■■■ index=■■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Background" opacity=■■■ mergemode=screen
mapping:
  center=■.■■■■■■■■■■■■/-■.■■■■■■■■■■■■ magn=■■■.■■■■■ angle=■■■.■■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■
  p_bailout=■■■■.■ f_fn■=sqr f_fn■=trunc
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■ index=■■ color=■■■■■■■ index=■■■
  color=■■■■■■■■ index=■■■ color=■■■■■■■■ index=■■■ color=■■■■■■■■
  index=■■■ color=■■■■■■■ index=■■■ color=■■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Layer ■" opacity=■■■ mergemode=addition
mapping:
  center=■.■■■■■■■■■■■■■/■.■■■■■■■■■■■■■■■ magn=■■■■■.■■■
  angle=■■.■■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■.■
  p_bailout=■■■■.■ f_fn■=ident f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=-■■ index=■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Layer ■" opacity=■■ mergemode=hsladd
mapping:
  center=■.■■■■■■■■■■■■■■/■.■■■■■■■■■■■■■■■■ magn=■■■■■.■■■
  angle=■■.■■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■.■
  p_bailout=■■■■.■ f_fn■=ident f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■■ index=■■ color=■■■■■■ index=■■■
  color=■■■■■■■■ index=■■■ color=■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
layer:
  caption="Background" opacity=■■■
mapping:
  center=■.■■■■■■■■■■■■■■/■.■■■■■■■■■■■■■■■■ magn=■■■■■.■■■
  angle=■■.■■■■
formula:
  maxiter=■■■ filename="mt.ufm" entry="mt-gen-celtic-m" p_n=■.■
  p_bailout=■■■■.■ f_fn■=ident f_fn■=abs
inside:
  transfer=none
outside:
  transfer=linear
gradient:
  smooth=yes rotation=■ index=■■ color=■■■■■■■■ index=■■■
  color=■■■■■■■■ index=■■■ color=■■■■■■■■ index=-■ color=■■■■■■■
opacity:
  smooth=no index=■ opacity=■■■
}

dmj-PhoenixDNovaMandel {
;
; This is the DoubleNova fractal (Mandelbrot form),
; a modified Newtonian-style fractal.
;
; This variant includes an inductive component similar
; to the Phoenix fractal.
;
init:
  complex zold = (■,■)
  complex y = (■,■)
  
  z = @start
  IF (@usecritical)
    z = ( -((@power■-■)■@power■■@coeff■) / \
           ((@power■-■)■@power■■@coeff■) ) ^ (■/(@power■-@power■))
  ENDIF
  
loop:
  y = zold
  zold = z
  z = z - (@coeff■■z^@power■ + @coeff■■z^@power■ - ■) ■ @relax / \
          (@coeff■■@power■■z^(@power■-■) + @coeff■■@power■■z^(@power■-■)) + #pixel + @induct■y
  
bailout:
  |z - zold| > @bailout
  
default:
  title = "PhoenixDoubleNova (Mandelbrot)"
  helpfile = "dmj-pub\dmj-pub-uf-pdn.htm"
  maxiter = ■■■■
  periodicity = ■
  center = (-■.■,■)
  magn = ■.■
  
  param start
    caption = "Start Value"
    default = (■,■)
    hint = "Starting value for each point.  You can use this to \
            'perturb' the fractal."
  endparam
  param power■
    caption = "Primary Exponent"
    default = (■,■)
    hint = "Defines the primary exponent for the equation."
  endparam
  param power■
    caption = "Secondary Exponent"
    default = (■,■)
    hint = "Defines the secondary exponent for the equation."
  endparam
  param coeff■
    caption = "Primary Scale"
    default = (■,■)
    hint = "Defines the coefficient (multiplier) for the \
            primary exponent term."
  endparam
  param coeff■
    caption = "Secondary Scale"
    default = (-■,■)
    hint = "Defines the coefficient (multiplier) for the \
            secondary exponent term."
  endparam
  param induct
    caption = "Phoenix Distortion"
    default = (-■.■,■)
    hint = "Sets how 'strong' the previous iteration's effect should be \
            on the fractal."
  endparam
  param bailout
    caption = "Bailout"
    default = ■.■■■■■
    hint = "Bailout value; smaller values will cause more \
            iterations to be done for each point."
  endparam
  param usecritical
    caption = "Use Critical Point"
    default = false
    hint = "If set, a critical point for the function will \
            be used in place of the Start Value."
  endparam
  param relax
    caption = "Relaxation"
    default = (■,■)
    hint = "This can be used to slow down the convergence of \
            the formula."
  endparam

switch:
  type = "dmj-PhoenixDNovaJulia"
  seed = #pixel
  power■ = @power■
  power■ = @power■
  coeff■ = @coeff■
  coeff■ = @coeff■
  bailout = @bailout
  relax = @relax
}
dmj-PhoenixDNovaMandel {
;
; This is the DoubleNova fractal (Mandelbrot form),
; a modified Newtonian-style fractal.
;
; This variant includes an inductive component similar
; to the Phoenix fractal.
;
init:
  complex zold = (■,■)
  complex y = (■,■)
  
  z = @start
  IF (@usecritical)
    z = ( -((@power■-■)■@power■■@coeff■) / \
           ((@power■-■)■@power■■@coeff■) ) ^ (■/(@power■-@power■))
  ENDIF
  
loop:
  y = zold
  zold = z
  z = z - (@coeff■■z^@power■ + @coeff■■z^@power■ - ■) ■ @relax / \
          (@coeff■■@power■■z^(@power■-■) + @coeff■■@power■■z^(@power■-■)) + #pixel + @induct■y
  
bailout:
  |z - zold| > @bailout
  
default:
  title = "PhoenixDoubleNova (Mandelbrot)"
  helpfile = "dmj-pub\dmj-pub-uf-pdn.htm"
  maxiter = ■■■■
  periodicity = ■
  center = (-■.■,■)
  magn = ■.■
  
  param start
    caption = "Start Value"
    default = (■,■)
    hint = "Starting value for each point.  You can use this to \
            'perturb' the fractal."
  endparam
  param power■
    caption = "Primary Exponent"
    default = (■,■)
    hint = "Defines the primary exponent for the equation."
  endparam
  param power■
    caption = "Secondary Exponent"
    default = (■,■)
    hint = "Defines the secondary exponent for the equation."
  endparam
  param coeff■
    caption = "Primary Scale"
    default = (■,■)
    hint = "Defines the coefficient (multiplier) for the \
            primary exponent term."
  endparam
  param coeff■
    caption = "Secondary Scale"
    default = (-■,■)
    hint = "Defines the coefficient (multiplier) for the \
            secondary exponent term."
  endparam
  param induct
    caption = "Phoenix Distortion"
    default = (-■.■,■)
    hint = "Sets how 'strong' the previous iteration's effect should be \
            on the fractal."
  endparam
  param bailout
    caption = "Bailout"
    default = ■.■■■■■
    hint = "Bailout value; smaller values will cause more \
            iterations to be done for each point."
  endparam
  param usecritical
    caption = "Use Critical Point"
    default = false
    hint = "If set, a critical point for the function will \
            be used in place of the Start Value."
  endparam
  param relax
    caption = "Relaxation"
    default = (■,■)
    hint = "This can be used to slow down the convergence of \
            the formula."
  endparam

switch:
  type = "dmj-PhoenixDNovaJulia"
  seed = #pixel
  power■ = @power■
  power■ = @power■
  coeff■ = @coeff■
  coeff■ = @coeff■
  bailout = @bailout
  relax = @relax
}

mt-■■■■■■a-m { ; Mark Townsend, Aug ■ ■■■■
init:
  z = ■
  c = #pixel
loop:
  z = @fn■(c■z^@e■) + @fn■(z^@e■) + c
bailout:
  |z| < @bailout
default:
  title = "■■■■■■a Mset"
  param e■
    caption = "First exponent"
    default = ■.■
  endparam  
  param e■
    caption = "Second exponent"
    default = ■.■
  endparam  
  func fn■
    default = ident()
  endfunc  
  func fn■
    default = ident()
  endfunc  
  param bailout
    caption = "Bailout value"
    default = ■■■■.■
  endparam  
  func fn■
    caption = "First Function"
    default = ident()
  endfunc  
  func fn■
    caption = "Second Function"
    default = ident()
  endfunc  
switch:
  type = "mt-■■■■■■a-j"
  e■ = e■
  e■ = e■  
  fn■ = fn■
  fn■ = fn■
  bailout = bailout
  c = #pixel
}
not generated by AI logo